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2 0, -4A composite search algorithm incorporating both the pdf guided
search and the guided accelerated random :-earch was found to
he more effective thin either search algorithm alone.

Clustering analysis has been shown to be a valuable tool for
a:ssessing the complexity of a search surface. The number of
modes (peaks), their locations relative to each other, tleir
shape and %olumne, anal the estimated maximum performance valuo
within each are all ad:ptively determined via clustering.

A iiew method ,or image encoding ha.s been formulated that pro-
vides image reconstruction of similar qualitv to methods
currently in use. This procedure also can find regions of
possible interest within the image beca)us.e of its ability to

treat the image as a whole rather than line-by-line. This
characteristic considerably enhances its value as a tool in
irake pattern recognition and classification.
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SECTION I

INTRODUCTION

This project is a continuation of the research begun under

Contract F33615-73-C-4007 to investigate areas ot self-

organizing systems theory that are relevant to the Air Force.

The previous study empha-,ized techniques for terminal-value

control of vehicles and for control systems tha' must avoid oper-

ating regions with high performance penalties (11). Both cas•es

irequired the development and incorporation of long--:erm memory

in the parameter search algorithm. This memory was efficiently

encoded in the form of multimodal probability density functions

(pdf s).

The objective of the present project was to develop these

techniques further and to extend them to higher-dimensional

problems. Four major areas of interest were investigated. First,

methods were developed and tested for increasing convergence

rates of searc: s that must avoid high-penalty regions. Second,

techniques for controlling probability density function-guided

searches were refined. Third, use of clustering analyses to aid

in determining the complexity of an optimization problem was

studied further. Fourth, the strategies resulting from the above

investigations were applied to an image-processing problem with

potential application in remotely-piloted vehicle (flPV) ground
ta r.-et qu.iton

It was found that probability density function-guided searches

can provide good inform:,tion with which to initiate guided,

accelerated random searches. The increased knowledge about the

characteristics of the optimization problem that the pdf-guided

search provides can be used to help other searches avoid regions

of high resource consumption or disastrously low performance.

Additionally, the pdf-guided search supplies a list of locations

with high associated performance that can be used as starting

points for subsequent searching.



Clustering analyses proved to be useful tools in locating and

describing both local and global extrenia, thus enabling the

investigator to judge the complexity of the surface to be studied.

In addition, they indicate shifts in extrema due to the inter-

action of the independent variables.

One of the major tasks of the RPV man-machine interface is the

encoding, transmission, reconstiuction, and interpretation of

pictorial information. This is usually accomplished by fast

Fourier encoding/decoding techniques. One main purpose of the

remote pilot is to spot those regions of a picture that contain

"interesting" information; e.g., a truck moving in a background

of clutter. A disadvantage of the fast Fourier method is that

it is insensitive to "interesting" regions; it treats all data

equally. A novel application of the parameter search procedures

studied in this prolect was made to this image interpretation

problem. While the data compression and reconstruction proper-

ties of this new approach compare favorably to the fast Fourier

method, the key result is that interesting regions of a picture

are automatically identified by the new encoding process and

conveyed directly to the remote pilot. Therefore, this

approach showed good promise as a new technique for image encoding/

decoding/interpretation. Although these procedures require further

development, they indicate solid potential for equalling or

bettering techniques presently in use.
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SECTION! II

DLSCRIPTION OF NU.MERIlCAL 0111MIZA'I1ON 'TIE:S'T SUIIFACE'

Thc first three (of fuu 1') work tasks in this project utilized

the amn! performance function to test the parameter searoh

algorithms. The function consists of a weighted sum of five

Gaussianly-shaped modes, with centers as Iisted in lable 1.

The location of each mode center remains constant for all values

of NDIM; e.g., the first coordinate location of Mode 2 is always

at 0.40. However, both the size factors of each mode, listed

in Table 2, and the amplitude factors, listed in Table 3, are

altered as the dimensionality J4 the parameter space (NDIM) is

increased, It was necessary to broaden the five performance

modes as NDIM and, consequently, the volume of the performance

space was increased. This insured that all portions of the

space would be influenced by at least one of the modes. The

absolute amplitudes of the three smallest performance modes

were increased for values of NDIM > 10. In this way, most of

the parameter space had a reasonably large (performance) func-

tional value. As a result ot these alterations in size and in_

amplitude, the location and function value of the global maxi-

mum shifts a: NDIM changes, as shown in Table 4.

The performance test function value, f(X), for a point in the

NDIM-dimensional hyperspace, X = is:... XN1IM

5
f(X) = f(x .... =m X(X)

N1 1

where. gM(X) is the mth Gaussian mode and it is equal to:

=X [(2 1'.)ND IM /2 (N\D I k iM

N DIM (x, <jmi) 2 J
where, mio am, and wm are given in Tables 1 2, and 3.

respectively.

3
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TABLE, 1

CENTERS OF MODES FOR PERFORMANCE TEST FUNCT1ON

______________Mode _ _ _ _ _ _ _ _ _

P)ivnnsio'n 1 2 3 4 5

1 .80 .40 -. 69 -. 83 -. 67

2 .39 -. 82 -. 98 .53 -. 05

3 -- 68 .59 .61 .03 -. 18

4 .94 .49 -. 72 .10 .75

5 -. 20 -. 62 .69 .79 -. 86

6 .14 .56 .12 .74 .25

7 -. 58 -. 29 .41 .64 -. 77

8 .30 .29 .81 -. 04 -. 39

o oA flO (Q R4

10 .97 .18 -. 03 .08 -. 12

II -. 32 .42 -. 66 -. 01 .50

12 .19 .37 .98 .21 -. 53

13 -.:1- -. 09 -. 78 1.00 .55

14 .96 -. 50 .99 -. 75 .32

15 -. 54 -. 52 -. 45 -. 59 -. 92

16 -. 63 .67 .46 -. 07 -. 73

17 -. 26 -. 99 .77 .92 .32

18 -. 14 -. 19 -. 74 -. 47 -. 94

19 -. 76 -. 27 .45 -. 43 .17

20 .20 -. 96 .62 -. 81 .63

4



TABLE 2

SIZE FACTORS OF MODES FOR PERFORMANCE TEST FUNCTION

, •I Mode

NDinwnsion 4od

2 1 .350 .400 .250 .700 .310
2 .455 .175 .4Z5 .200 .250

, 1 .600 .650 .750 .709 .550
2 .705 .600 .675 .650 .750

5 3 .760 .650 .680 .720 .710

4 .700 .600 .685 .643 .610

5 690 .800 .710 .685 .770

S9.00 .850 .850 .900 .85c
2 1.005 .800 .775 .850 1 .bO
3 1.060 .850 .780 .920 1.010

4 1.000 .800 .785 .840 .910
5 .890 i.000 .810 .885 1.070

10 6 .900 .955 .775 .795 .850
7 .870 .700 .800 .750 .860
8 .900 .830 .785 .830 1.015
9 .940 .940 .650 .935 .500

10 .835 .800 .785 .920 .960

1. 1./57 2.005 1.255 3.514 1.536
2 2.284 .879 2.134 1.004 1.280
3 1.280 2.008 1.079 1.180 1.178

4 1.330 1.757 .728 .979 .947
5 1.104 2.761 1.155 1.079 2.662
6 1.757 1.832 .176 2.108 1.434

SZ.;&9 1.054 1 .503 .628 1.894

15 8 1.004 1.355 2-259 2.761 2.1,6
9 1.466 2.510 1.491 1.355 2.330

10 1.079 1.305 2.761 2.033 1.178

ii .929 2.2!9 1.807 2.008 1.178
12 1.456 1.049 1.506 2.259 1.b5O

13 1.205 2.284 .628 1.180 1.792
14 2.385 3.514 2.28-. 1.205 1.229

15 2.761 3.514 i.506 .954 1.280

I
3 2.815 3.217 2.010 5.629 2.432
2 3.659 1.407 3.418 1.608 2.030
3 2. 001 3.217 1.729 1.890 1.870

4 2.131 2.775 1.166 1.568 .151
5 1.769 4.423 1.850 1.729 4.202
6 2.815 2.935 2.815 3.337 2.272
7 3.538 1.683 2.412 1.005 2.995
8 1.608 2.171 3.613 4.423 3.438

9 2.252 4.021 2.372 2.171 3.679
10 1.729 2.091 4 ' 3.257 1.870

20 11 1.488 3.613 3.217 1.870
12 2.332 1.649 . 3.619 2.392
13 1.930 3.659 1.890 2.835
14 3.820 5.629 1.930 1.959

15 4.423 5.629 . 1.528 2 030
16 1.649 1.769 ' 2.131 1.870

17 2.734 2.815 20[ 1.809 2.392
18 1.287 1.769 2.412 1.608 3.558
19 1.608 1.890 5.629 1.809 3.438
20 1.005 2.332 1.045 2.412 3.247

95
U)

Ii
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TABLE 3

AMPLITUDL. FACTORS OF MODES FOR PERFORMANCE TEST FUNCTION

M Mod.e
N Dimension 1 2 3 4 5

2 -1.00 -0.50 0.10 0.50 1.00

3 -1.00 -0.50 0.10 0.50 1.00

10 -1.00 --0.75 0.50 0.75 1.00

15 -1.00 -0.75 0.55 0.75 1.00

20 -1.00 -0.75 0.55 0.75 1.00

6



TABLE 4

LOCATIONS AND FUNCTION VALUES OF GLOBAL MAXIMUM

ND I1M

Dimension 2 5 10 15 20

1 -. 671 -. 710 -. 734 -. 848 -. 976

2 -. 046 -. 025 -. 014 .463 .486

3 -. 187 -. 237 -. 063 -. 056

4 .746 .755 .390 .745

5 -. 855 -. 859 .653 ,660

6 .246 .423 .377

7 -. 788 .561 .535

8 -. 442 -. 537 -1.000

9 .543 .705 .835

10 -. 154 -. 145 -. 312

11 .420 .595

12 -. 446 -. 734

13 .939 -. 879

14 -. 292 -. 181

15 -. 693 -. 734

16 -. 640

17 .817

18 -. 819

19 -. 142

20 -. 481

Function
Maximum: 1.0164 .9696 .9459 .9660 1.0259

7



SECTION III

SELF-ORGANIZING SEARCH ALGORITHMS

It was shown in the previous work (il, 12, 13) that the results

of a pdf-guided search could supply a good location from which

to begin a guided random search -- at least for two-dimensional

spaces. One of the work tasks in this project was to investigate

this concept for higher dimensional spaces. By way of intro-

duction, the next two subsections are excerpted from (11).

3.1 Self-Organizing Long-Term Memory Search (PDF)

Because of physiological, structural, thermal, or other con-

straints, many systems must avoid operating regions character-

ized by very high performance penalties. Those cases in which

the regions to be avoided can bUU ACJnuede by placinig aluij±i

bounds on the search present little difficulty; therefore, the other

cases, in which these regions can only be determined after the

fact, .;ere investigated in this study.

The two types of high-penalty search problems are:

1. Those in which a narticular choice of a set of para-
meters leads to poor system performance (as measured
by a performance assessment function) witn an accom-
panying large consumption of system resources (e.g.,
operating an aircraft engine well below its maximum
thermodynamic efficiency decreases its work output
and increases the fuel consumption).

2. Those in which a particular choice of a set of para-
meter leads to a disastrous outcome (e. g., increasing
the pressure in a boiler beyond an upper safety limit).

Since the resources available to conduct the parameter search

problem are limited (such as the amount of aircraft fuel or the

maximum number ol trials in a computer-based optimization), this

factor must necessarily play an important role in the logic of

9
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the search procedure. Accordingly, the pdf-guided search

algorithm is explicity guided in its internal strategy as a

function of the remaining system resources.

This new search technique additionally employs the information

gained by previous trials (iterations) in a novel way so as

to increase the probability that future trials will yield better

performance scores than past trials. The information g-ained

in previous trials is encoded in a multivariate probability

distribution function, p(Xlk), which denotes the probability

that the !rial parameter vector X ý (x,, ... , x ) will yield a
1th N

performance, P(X), which falls within the k1 bin in the perfor-

mance range (k = 1, .... , K), where k = 1 denotes the range of

best performance scores. Trial vectors, X, are selected on the

basis of yielding good performance. Alternately, trial vectors

could be so selected that the probability is low that they will

not yield poor performances. A trial vector yielding a poor

performance denotes a wasted experiment. Each wasted experiment

is c).t y. Therefore igi'I, pe.nalties are asSign_ A ri it

the parameter space in which trial X vectors are obtained with

correspondingly poor- performance scores.

After each trial vector X is employed, the performance score,

P(X), is noted, and the region of parameter space containing

X has a probability assigned to it based on the value of P(X).

If P(X) falls within the kth bin, p(Xlk) is updated. In this

manner, all the information that has been generated since the

beginning of the search is encoded in long-term memory PDF's.

These, in turn, bias the search away from probable low yield

parameter regions and towards probable high yield regions.

The terminology used in referring to the three parts of the PDF

search in this report is as follows: PDFI -- unbiased random

sampling (of KTOT points) followed by division of the KTOT points

into K performance classes depending upon the associated performance

value- PDF2 -- K separate cluster analyses in the N-dimensional

space to obtain one multimodal pdf for each of the K classes; PDF3 --

adaptive search phase in which the p(X k, are updated as outlined

above and described in detail in (ii, 12, 13).

10



3.2 Guided Accelerated Random Search (GARS)

The guided accelerated random search (GARlS) algorithms are probability-

state-variable (psv) searches that are particularly intended for

applications involving multimodal performance surfaces. These

algorithms are suitable for spaces of low or high dimensiorality

and for the search of stationary or time-varying surfaces. The

more flexible of the GARS algorithms contain the following provisions:

(a) Uniform Random Phase -- A search phase in which a uniform
pdf is employed to govern the generation of random
trials. The heuristic principals of reversal, acceler-
ation, and deceleration ar,_ incorporated for the
exploitation of the results of random experimentation.

(b) Biased Search Phase -- A search phase in which the pdf
is adjusted in accordance with the result, 5of ongoing
trials so as Lo increase the rate of their convergence.
This is the most important of the GARS phases ( rnd
utilizes three basic methods of governance of random
experiments. The principals of reversal, accelerations
and decelcrations arc again cmploycd, as in the uniform
random phase, subsequent t'i each random experiment
producing an improved or worsened score.

(c Biased Random Phase with Activity Factor -- A phase in
which the fraction of the total number of free variables
subject to manipulation is; progressively reduced from
unity until approximately two variables only (or the
average) are being adjusted. An activity factor,
which is a function of trial number and/or performance.
determines the a priori probability that a specific
parameter will be varied in any given random trial.
The identIty of parameters manipulated is kept random
while the activity factor is systematically reduc.ed.
This phase is the same as (b) except for the use of
an activity factor.

(d) Systematic Phase -- A phase in which a steepest-descent
(or ascent) principal is used (with small activitv
factor in the case of hig-h-dimensional problems) for the
"fine tuning" of performance in the vicinity of best
results from a preceding random phase.

(e) Systematic Phase With Single-Dimension Manipulatie;n --
Subsequent to the steepest-descent adjustment, a systematic
one dimension--at-a-time adjustment is made of the manipulable
parameters.

11



In addition to the concepts of reversal, acceleration, and decelera-
tion mentioned above and described in the general literature

(2, 3, 9), several additional principals are embodied

in the general GARS-type algorithms. These relate to the

observance of boundaries on the admissible values of parameters,

procedures for periodic reinitialization of GARS so that the

record ot best-to-date-performance does not become misleading
if the performance surface is varying with time, and use of certain
methodis for controlling the directions and lengths of random steps.

A1. of the probability state variable techniques, including GARS,

offer rapid convergence and have the ability to deal with the

problem of time-varying surfaces and high levels of noise in

measurements.

The method or methods used for storage of performance data are

of great importance in advanced versions of self-organizing and

learning systems because the efficiency of such systems is

highly dependent on the memory processes used. This is

particularly tL-ue for multivariate systems: if one uses conven-

tional methods, the retention and accession of information

become increasingly difficult as the number of variables increases.

Accordingly, those procedures suitable for encoding long-term

memory for self-organizing and learning systems were investigated.

12



3.3 Composite Sev.rch TeŽchnique Combining POF and GARS Algkirithms

Each of the techniques described above has certain advantages

and disadvantages. GARS is fast and accurate, but its conver-

gence rate is somewhat dependent on the choice of a starting point.

GARS can sometimes spend considerable time extracting itself from

local maxima. PDF can more accurately learn the general topo-

graphy of the performance surface and, consequently, it can distin-

guish between local and global maxima quite well. its main disad-

vantages are that it is slow and it is unlikely to discover the

centroid of the global maximum without high expenditure of resources

(i.e., large amounts of searching in the immediate vicinity of the

global maximum).

A more general and powerful approach would be to combine PDF and

GARS. The multimodal statistical capabilities of PDF would be

substituted for the unimoaa] statistical stra-egy of GARS'

random phases. Such a method would not only retain the virtues

of each algorithm, but would yield other benefits not possessed

by either alone.

To begin with, PDF provides GAIS with a good startdng point This

can be either the best single point found by PDF or the cluster

center of the mode possessing the highest performance value. If

there is more than one extremal point of interest, the PDF results

can be employed to locate the regions in which they occur, and to

initialize a search in each one. The knowledge of the topography

of the performance surface acquired by PDF can also be used to

more effectively prevent GARS from falling into regions with high

resource penalties or low performance score.

Perhaps the most important benefit of combining PDF with GARS is

the increased sophistication and efficiency that IPDF can give to

the second and third phases of GARS (the statisticallV biased

search phases). As GARS is presently formulated, a unimodal pdf

is generated, centered at the current best-to-date point, and this

distribution is used to choose the next trial point. This method

i.s a considerable improvement over simple random sampling, but it

mainly confines the search to a (Gaussianly--shaped) neighborhood

13



ol the current best-to-datc point. Limiting the search in this

way both slows convergence and may result in the search occasion-

ally and unnecessarily becoming stranded on a local maximum for

a long period. Substituting the multimodal distributior function

adaptively developed by 1,DF will provide GARS with much more

information about the performance surface. This will enable

GARS to make better choices of new trial points. The results of

each trial can be used adaptively to update the pdt model, lead-

ing to more efficient searching.

3.4 Experimental Procedure

The procedure followed in this investigation was a modest first

effort at approximating the composite search algorithm described

above. It does, however, demonstrate that combining the two

techniques is both feasible and desirable.

The experimental procedure was as follows. The test surface

was selected to be the performance function described ifl-

Section 2. It was first searched (for the global maximum) using

the PDF algorithm. This consists of an initial random sampling

followed by a clustering analysis, then a pdf-guided search,

until the system's resources were exhausted as described above

in Section 3.1.

GARS was initialized in three different ways. First, the random

phase was deleted and the first biased phase started from the

best point found by PDF. Second, the random phase was again

deleted and the biased phase started from the center of one of the I
clusters formed by PDF from the points in the top performance

class. These first two schemes for selecting a starting point for

GARS, in effect, substituted PDF for the random search phase of

GARS. The third technique was to use a cluster center from the

lowest performance class as the starting point for GARS. This

ensured that the starting point would be far enough from the

14



global maximom th al lu) For a val id corlparison to -better- start-

ing points. In this third case, the Wit iat random search phase

was ro.a ined.

Table 5 summarizes the 42 experimental searches that were made

on the live performance surfaces. NDIM is the dimensionality of

the surface; KTOT is the number of samples in the random phase of

PDI" (note that for NDIM = 2, 5, and AO, there is more than one

value of KTOT). Changing the number of random samples affects the

structure of the cluster model and the percentage of the initial

resources that is consumed. The strategy for the pdf-guided

search is therefore altered as well. The GARS starting point is

identificd in one of five ways:

-X EDF best point

Center of cluster in top performance class i
(if there are more than one such cluster, K
they are numbered consecutively, xlX2, etc.)

xB - Center of cluster in lcvest performance cla5 s

* - Origin of space (2 and 20 dimensions only)

xc A random point (2 dimensions only)

To ensure that xB was not too far from the global maximum to be
validly compared to x* and x. x and x were used as checks.

0 c
The values of all the starting points are listed in Tables 6

through 10 along with the final (best) point and, for each value

of NDIM, the location of the global maximum.

3.5 illustrative Example

The results of the 42 searcnes are given in Table, A-! thrnugh

A-l1 of Appendix A. To clarify the expe. imental procedure and to

aid in interoreting results, Run 1 of Table A-I can serve as an

illustration.
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TABLE 5

FOIRTY-TXO SEARCIHES MADE WITH COMPOSITE ALGOR ITIIM

GARS
Start i1g

Rtn Numbc r NI)IM KTOT Po int

1 2 50 x

2 2 o0 x

3 2 100 x

5 2 200

6 2 200 x 1
7 2 200 x2

8 2 200 x3

9 2 200 x4

10 2 - x 0

1 2 -x

12 2 200 x3

13 5 100 x

14 5 l0o A

15 5 100 x2

16 5 200 x

17 5 200

18 5 200 I2

19 5 zoo x3 J

20 5 200 x4

21 5 200 x

22 5 200 x6

23 5 200 7

24 5 200 8

25 5 200 xB

26 10 100 ×*

27 10 100 x

28 10 200 X*

29 10 200

30 10 200 x2

31 10 200 xB

32 15 200 x

33 15 200 0

34 15 200 x2

35 15 200 x3

36 15 200 B

37 20 200 X*

38 20 200 x.

39 20 200 x2

40 20 200 x3

41 20 200 x

42 20 200 x

16
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TABLE,. 6

31rARTI J AND FINAL POINTS F"OR SEAIiCIII.ILS
OF TWO-DIMENSIONAl, TEST FUN(TION

Run Number Starting Point Final P'oint

1 -. 663 - .054 - .670 -o.045

2 -. 635 -. 069 -. 675 -0,16

3 --. 66( -. 0.t8 - .667 - 0.19

4 -. 640 .138 -. 671 -0-t8

5 -. 690 -. 050 -. 671 -. 045

6 -. 682 .391 -. 671 - 0,18

7 -. 507 .0-14 -. 675 -. 047

8 -. 886 .165 -. 671 - .046

9 - .708 -. 232 --. 670 - 0,46

10 .000 .000 - .170 -. 051

11 5'70 -. 990 -. 672 - .0,8

12 .752 .698 -. 672 -. 048

True Maximum: -Q.671, -0.046
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iun 1 w:- a combin ed search ".fn the two-dimensional test surface.

Th. locations, sizes, and amplitudes of the performance function

were gixen above in Tables I through 3, ard the location and functi(

value of thie glTobal maximum were given in !able 4.

The system initially possessed 400 units of resources, or 200

units per dimension. Fifty random trials were made, equalling

25 per dimension- The system resources are depleted on each trial

by the diffe;ence between unity and the mnaximum fuzhction value,

whichever is larger, and the function valut: of the trial point.

Since the miuimum function value is approximately *-1, the average
functioni value s•hould be approxi'natelyv 0, and tne F.nalty per
random trial is approximately 1. This is c-nfirmed by the resource

co-•munption in PDFI, the unbiaset random search--52 60 units for 50

trials--whih consvitutes a loss of 13.15 percent of the total systt

resources. The best poina found by the random search ip Run I had a

function value oi 0.9897, cr ?7.4 percent of the maxirmnu value of

1.0164.

In order to facilitate comparisons between experiments, the dir-

tanee from the best point to the global maximum nas been normal-

izod by the maximum diameter of the hypercubical space. For ýach

of the five test surfaces the snare is a hypercube with r',ch

dimension taking on values from -1 to +?. Therefore. the maximum

ji4stance between he two points is 2 x (NDIM), whure NOIW is

the dimensions' ity of the ,cn- surface. Thus, for Run 1, the

normalized ditqance rinm the best to the maximum ;s 0.02.

PDF2, the second section of I'DF, is a clustering analysis. In this

case, the 50 sample points fall into 12 clust, rs.

"D}D3 is the guided search phase. In this case, the system Yesour ceE

were not expended until 500 trials (250 trials per dimrension) had

occurred. This is a strong indication that th,. search is focusing

increasingly rn the higher perfiormance class as it shij"i d, as

explainned above in Section 3.2. The 500 trials consumed only

22



347.40 re-source units, or 0.70 units pe1 trial. This is substan-

tially lower than the average of 1.05 units per trial in PDFI,

indicating that the av'erage performance is considerably higher.

The resource consumed in PDF3 was 96.85 percent of the initial

system resource, that is, all that remained upon terminating PDFI.

The best point found by PDF3 has a function value of 1-0155, which

is 99.9 percent of the maximum value. The point itsell is a negli-.

gible distance from the global maximum. TLe difference in function

values between the PDF3 best point and the PDFl best point is

0.0258.

The GARS search in Run 1 is begun with the best point from the PDF

search as shown in Tables 6 through 10. Part 1, the random search.

is doleted since PDF has already fulf: lied the purpoSu:_ Parts 2 and

3 of GARS. the b- ased search phases, are allcwed to run for a maxi-

mum of 50 it.vations each. Neither par-: can impr-)ve on th- starting

point. (At the current stage in the development of GAllS, Parts 2

and 3 employ a unimodal pdf, cente,•red at the current bfst point.

to choose tho next trial point. The multirodal dis-trib)ution gene-

rated by the PI)F algordthm itas not ",-t been incorporate( as dis-

cusse;d in Section 18.3.) The gradient search phase, Part 4, is also

allowed 50 iterations; it succeeds once in findiing a better point.

The function value o! the p-oint is 1.0158 or 99.9 percent of the

function maximum. The normalized dis a n e from the n ?w best point t

to the global maximum is 0.03. (Note that 1i is possible for a

point farther from the global mcximum to have a higher function

value than anothoer, closer point. ) w fine-tuning phase of GARS,

Part 5, s all(w.od only 20 iterations; it impro)ves•) on the best

poi t once. 'The new best ooint has a f'ui..tion va]ue of 1.01641,

the maximum function value, and is at a near-zero normaliz/ed dis-

tance from the global maximum.

2 3



:eral I in Run 1, then, GARS was allowed to make 170 iterations

and had t.wýo successes. The best point, its percentage of the

,axirwim value and its distance from the global maximum, are as

Vivcn for Part 5. The improvement of the GARS highest function

viue over the PDF highe-st funct :on value is 0.0009.

.3 6 HoS.•I tl s and Conclusions

Tablos A-1 through A-1 list results by run, Figures 1 through 3

,,re-sen(, the most significant overa]1 results of the investigation.

Figure I shows the percent of maximum function value achieved by

!'Ill as a tuncti,. of the estimated number of trials per dimension.

Th, estimated number of trials for a given experiment is the

,P ,'H(er ot trials th. system can be expected to make before running

oO t of resources. It is computed by dividing the amount of initial

system recource by the estimated average resource consumption per

trial. In this problem, the values of the performance function

ranged from -1 to K1, and the estimated average resource consump-

iion is one unit per trial. Then in the ease where the initial

system resource is 400, the estimated number of trials is 400;

if the dimensionality is 2, the estimated number of trials per

dimension is 200.

-igure 1 also illustrates the rate at which the global maximum

is reached waith respect to the number of trials per dimension
a search is allowed to make. It can be seen that given enough

r(:suurces to take approximately 200 .amples per dimension, PDF

can converge to the global maximum. This is not practical for

problems of high dimensionality; GARS or a similar technique

iK needed Lo supplement PDF fJo these higher dimensional surfaces.
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-'I
Figures 2 and H indicatle tih, influence of PDF on GARS."' F igure 2

illts•l i'at's the nurahr of sticcs' • fil i'Ouvo ;r . Ii"ui,:ist, - (stalrl-

ing I ,m e Ihe NOi" nec point ) that G(AiS requiires tI" a:cVli " ,• e hv ,

I,:t.i!IIUl1! eiU t'!.io: %aLLiltr, att, a lulict i-l. of the estimiate~d numbur )l

trials per dimunsion in PDF1. More time spent in PIWi mpro\.o'-

the performance surface model and thus enables GARS Lo ope-ratf

mrc (Ž1lici ult I C (ARS would be0 tkt.'j, more el ie t ix'" i I Acre

modified to ta•e lullr advant age cl the PD- modeJ.

Figure 3 shows clearly that GARS in combination with PDF is more

powerful than GARS alone. For each of the five performance

surfaces, the number of successful moves per dimension for GAPS

to achieve the maximnum is given as a function of dimensionality

for each of three starting points: x the PDF be.t point; x,

the cluster center .t the best periormance cWass; and xB- the

cluster center from th, low periufrm:nn -'" i S used as in ride-

pendent. starLtihrig pjnintL. In Lhe cases where there was mole than

one cluster in the top performance class, the number of moves

plotted is the average number of moves for all runs which roached

the maximum (see Table 5). Except for one case (N - 15 for

x - x , GARS reached the maximum more quickly 1rom x thnan i'rom

Bx and IP•oN cq.vi&J [ro.ni a ; • niral;• at N - 1:U 4 rohah-y

a fnut i n of the particula" test surf ce used. ) In t he t ase uo

x - x for N-15, the GAPS random search quickly fou-.And a point

witt, a function value almost as large as those cases using the

PDlr'-%u',,rated Y arnd A as starting points. This point was located

in a more favorabl, position on the surfact, so that GARS -,)ent

less t ime on Lho hi.sed searchps and the gradient search. It

is readily apparent that PDF i. n xvlLiauble preliminary step to

GARS, and can profitaLtly be substituted toi the rand)m sear,'h

phase of GAR,.'.

1 In F irure 2, 1 lie va I ue for t lh t e( -di mr'ns i on al ptrobler' has been
set of f separatoel] n•(I not bl:cn i nl ud(eod in hle intcrpolations.
The te(n-dimensional search discovered it .- best point in the
first, naMal lost (0O0-poini ) random sampling in PDO. It did not
improve oni this va1flO int a stlo.Usecueneat 200-poinit ran dom searchl
or il Lthe guided senrchs V"ollowin 1tphe random searches. Thus
the PI'- resýults, the GARtS startl•.g VO ,is. arid the GARS perform-
ance are no' wo!r tabL. ".' to thus- I to I h(- litItlr" j)'tblcti15.
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PDF enables GARS to find not only the global maximum, but

other maxima in the high performance class. The ability to

locate local maxima can be significanL for certain problc:,,b.

For instance, it may be desirable that a system be able to operate

in more than one region in its parameter space. In other cases,

operating at or near the global maximum may be unfeasible if

this value is close to a catastrophic operating region. (See

Run 24, Table A-6 and Run 30, Table A-8.)
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SE-CTION IV

ASSE1SSMENT OF THil: COMI'LE-XITY O1' A SEARCH (OPTIMIZATION) PROBLEM

4.1 Need for a Measure of Complexity

A major problem is to estimate the 'complexity" of a search problem.

Complexity of the performance hypersurface can be defined to be

(]) the number of modes (peaks), (2) their locations relative to

each other, (3) their shape and volume, and (4) the estimated

maxiýnum performance value within each. If this information were

obtainable betore beginning a search problem, these data would not

only specify the complexity of the search problem, but would also

probably identify the most appropriate search strategy.

4.2 Applicability of Cluster Analyfsis

It was shown in the previous effort (11, 12, 13) that a cluste!'ing

algorithm can be useful in pointing out regions of a performance

,..Ura. th,*t 1hv 's .gJi-t Xdi U1ta c U101 vui nines, or performance

values. It can locate both peaks (maxima) and valleys (minima),

and give information concerning the size, location, and approximate

extreme value of each.

The procedure to be followed is very similar to Parts I and 2 of

PDF: a random search followed by a clustering analysis-l (see

Section 3.4). The performance space should be sampled extensively

enough to ensure that no large regions are neglected; that is,

the space must be sampled fairly evenly, with no large unsampied

gaps, to minimize the possibility of missing a potentially signi-

ficant extremum.

Following the random search, the sample points are divided into

perlormance classes according to their associated function values.

The classes need not have equal function value ranges (i.e., the

.....................
"The Mucciardi-Gose CLUSTR algorithm was used (10).
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i

dil ference between upper and lower bound.•). ,.,r contain equal

numbers o12 sample points. The number of classes is limited only

by the number of sample points; that is, there should be a

sultietent number of points in each class to make a clustering

analysis useful.

Each performance class is clustered separately. The fcllowing

information is determined' number of cells in each cla:•s,

location (i.e. c•nter or mean) of each cell, size of each cell,

number of points in each cell, and a list of the identity of

each point in each cell. In addition, an optional "intercel!

analysis" may be performod. This analysis locates and identifies
a__

pairs o cells which overlap, whether they are in the same class .•

or in different clas•es. For a given pair, the interee!l analysis I

|
also estimates the percentage or each cell's volume falling within

lheir common region. []

4.3 I 1 i U S t v a__3_t 1 v/__2_ Exa•,m i w

I
A sample problem is the clearest way of illustrating the utility [

oi clustering analyses as a means of assessing complexity.

The two-dimensional performance surface employed in this study

was d•cribed in Tables 1 through 4. The locations, shapes,

and sizes of the five pertormance modes are illustrated in Figure 4.

The small ellipse for each mode is located a• one "size factor"

distance from the center of the mode--%he large ellipse a.t tt,-ice

that distance. Tim pcrtormanco surface consists of three modes of

positive height (3, 4, and 5) at the left of the surface, and two

modes or negative height (I and 2) at the right of the surface"

that is, three peaks and two valle}s. There is a moderate amount

of influence between Modes I and 4, 4Ild 2 and 3; strong influente

bctween Modes 3 and 5, and 4 and 5' and very little influence

between a.•y other pairs.
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For this problem, the four performance classes are divided as

()I 1lows:

Class I - 0.5 < P

Claszs 2 - 0.0 < P < 0.5

Class 3 - -0.5 < P 1: 0.0

Class 4 - P < -0.5

Given the amplitudes of the five modes (as listed in Table 3),

we should expect the clustering analysis to construct one or more

clusters, close together, in each of the two extreme classes and

several distributed over a wider area in each of the two middle

classes. A middle-class clusl~er represents one of two possi-

bilities: a performance mode with its extreme value in the perform

ance class in question, or a region of transition between a

higher class and a lower class. The intercell analysis described

in Section 4.2 above is useful in determining what a given cell

represents. In the first case--a mcdc with its extreme value in

the class in question--the cell will overlap primarily.' with cells

of the next l(;wer class if it contains a peak, or of the next

higher class if it contains a valley. In thi, second cas,--a transi

tional region between a hi.gner and a lower class--the cell will

overlap with cells from both classes, and possibly with other cells

from its own class.

The cluster analysis was performed first on 50 points taken randoml'-

from the surface as shown. It produced 12 clusters, distributed as

follows:

Class 1 - One cluster

Class 2 - Five clusters

Class 3 - Five clusters

Class 4 - One cluster
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The locations, shapes and sizes of the clusters are illustrated

in Figure 5. Notice that the surface has been incompletely

sampled; some of the outer porLions of the surface are not included

in any of the clusters.

However, even given the sketchiness of the sample, the cluster

analysis gives very significant resuti-. Cal] 1, the singl(e

Cluster in Class 1, contains the glo)atl maximuM:. Us A otW i lon

and size it also indicates that the SUtUal inftlucnu of Mecdos 4

ann 5 has broadened the area of peiliormance o. Class 3. Ceils 2

through 4 describe the region resulting irou Mode - and cne

waning influence of Mode 5. Cells 5 and 6 are limited to on(E

point each due to the limited sampling in that region, but

they indicate the Class 2 region resulting from Mode : and somer

slight influence of Mode 5.

Cclls 7 and 8 cover some' of the trans Jl ionai are;. r-'twen. 'he e

posit ve: Modes 3 through. 5, and the negative Modes I and 2.

Cell 9 includes not only a good deal of transitional area. but

also most of the region dominated by Mode 2. Celi Iv curtains
onlv one point, but that point, since it is located on the(
outer boundary of Cell 12 (the only cell in Class 4), helps

to define the limits ol Class '. Cell 11 also contains a single

point: it helps to determine uiCu (uendar) between Class 2 and

Class 3.

Cell 12 conLains the center of '!obd 2 it- shi ft do,knward is due

to the influe-ce oI Modes 2 (negative) and 4 (pos livye). It is

no t.,-ly arger than Ce] 1 2 sIM, Wi C Md ;S 5 1 arger 1ban .atMode 5.
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In these examples, the modes in the middle performance classes

(Classes 2 and 3) were not isolated. To find them it would only

be necessary to increase the random sampling and to make the

performance class values rarrower. Eventually, each peak would be

represented by a cell containing the local maximum, surrounded by

rings of cells from decreasing performance classes. Similarly,

each valley would produce a cell containing the local minimum,

surrounded bY rings of cells of increasing performance classes.

The function value of the cell centers in Classes 1 and 4 would

give fair approximation3 of the global maximum and minimum.

A second cluster analysis was performed, this time on a 100-point

random sample of the same surface. The re.sults are shown in

Figure 6. Due to the increased density of the search, the model

defines the boundaries of the four classes more precisely. It

is easier to perceive the transit ion trom C 1as• I t!.rnugn C;J asse. 2

and 3 to Class 4. in addition, it is clearer that the cell in

each e,.treme class is actually surrounded by a ring of cells in

the next lower class (the Class 1 cell surrounded by Class 2 cells)

cr the next higher class (the Class 4 cell surrounded by Class 3

cells).

In tests run on problems of higher dimensionalitv, it becomes some-

what more difficult to interpret the results. However, it is e\i-

dent that cluster analyses, when properly interpreted, are able

to provide excellent information concerning the complexity cf high-

dimensional surfaces. This can be seen from the fact that a cluster-

ing analysis of any random sampling of one of the surfaces . pl.oved

in this project always yielded at least one cell which contained

the global maximum. In addition, the number of cells in any class

was equal to (and in most cases greater than) the number of per-

formance modes in that class, with two exceptions, as shown in

Table 11.
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TABLE 11

COMPLEXITY OF PERFORMANCE SURFACE
ESTIMATED BY CLUSTER ANALYSIS

Modes In Class Cells In Class
N KTOTI- 1 2 3 4 1 2 3 4

2 50 1 2 1 1 ] 5 5 ]

2 100 1 2 1 1 1 9 12 1

2 200 1 2 1 1 4 15 24 5

5 100 2 1 0 2 2 11 7 3

5 200 2 1 0 2 8 24 12 5

10 100 3 0 0 2 1 4 3 6

10 200 3 0 0 2 2 3 6 12

15 200 3 0 0 2 3 13 6 9

20 200 3 0 0 2 3 15 6 8

I
Number of Points in Random Sample.
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The two exceptions are for Class 1 in the two 10-dimensional

searches. in thie 13-dimensional problem, the three high perform-

ance modes are usually close in dimensions 6, 9 and 10; Modes 3

and 4 are close in dimension 7, and 4 and 5 in 8. (See Table 1).

'Their strong mutual influence results in a large region of high

performance, which is interpreted by the clustering algorithm,

as a single cell yin the first case) or as two overlapping cells

(in the second).

4.4 Conclusions

It can be seen that clustering analysis fulfilis the needs of a

complexity assessment: it can discover peaks and valleys, I

report their locations, estimate their sizes and volumes, provide

information for search initiation, and approximate function values.

In addition, it can locate and characterize transitional regions.

The.refore, the clusteriniz alaorithm, do(- nrnvi- readily ac.esibic

information about the structure of a given performance space.
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SECTION V

EXAMINATION OF AN IMAGE-PROCESSING PROBLEM
WiTH POTENTIAL RPV APPLICATION

One persistent problem in both communication and weapons sv,•sle:s

development has been the efficient encoding and transmittal of

digitized images. The technique most widely used at presrtý. i<

as follows: Each line of a digitized image is treated as a \,,ave-

form, the waveform is encoded by performing a Fourier trans.f, '..

The resulting set of Fourier coefficients for that line is then

transmitted,and the picture is reconstructed line-nv-line via -.n

inverse Fourier transform.

The set of Fourier coefficients contains as many elements as does

the line of data itself (that is, the Fourier transform of a

100-element line has 100 coefficients). It has been found that

it is possible to discard some ot tile coefficient .. assoc.atc.d 'ith

the highest frequencies and transmit the remaining fraction

(1, 4, 5, 6, 7). A problem arises in deciding how many coeffi-

cients to retain. Of course, fewer coefficients retained and

transmitted implies faster and easier transmission and recon-

struction. The penalty lies in poorer image resolution.

Since the area of fast Fourier transform (IFT) retention and recon-

struction has been thoroughly explored, it seemed beneficial to

approach the basic problem -- high accuracy of reconstruction with

minimal data transmission -- in art encirely new manner.

Instead of viewing the digitized image a line-at-a-time, the

image can be considered as a matrix with each point (element)

possessing three descriptors: row. column, and gray level infor-

tration (e.g., reflectivity, visual density, etc.). Approaching

it in this way enables one to visualize the image as a three-

dimensional performance surface. That is, gray level information

(y) can be regarded as a function of location (row, x 1 . and

column, xs2).
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Tnis approach ha.-i three main advantages over the row-by-row approacl.

First, the eve dces net perceive an irnage in horizontal bands,

but as a whole; an encoding technique thut does the same can poten-

tially achieve improved subjective information content. Second,

by treating a continuous area, an algorithm will be more sensitive

to interesting features (e.g., large patches of one gray level, or

a repetitive pattern) than a row-by-row analysis can be. Third,

identification of regions (i.e., "clusters") of a given gray level

in the image also provide the first stage in recognizing classes

of objects, oj. "targets'" in the camera's visual field.

T'ht problem of image encoding resembles more closely the problem

of assessinF, compiexity (Section 4 -- locating and describing .lAI

extrema) than it does the problem of optimization (Section 3 --

locating a single extremum). Therefore, clustering analysis

appeared ro be quite useful.

5.1 Description of Problem

The problem considered in this portion of the project was the en-

coding and recon:"-truction of a photograph of downtown St. Louis,

shown in Figure 7. The picture contains very light area-s -- the

sunlight reflecting from the metal arch -- and very dark areas --

shadows of buildings. It is a rather detailed and complex picture,

particularly because areas of comnon gray level are not always

contiguous.

The figure was digitized by division into 32 rows and 32 columns.

or 1,024 separate locatious. Two hundred and fifty-six levels of

gray were used for each of the 1,024 locations. The 28 gray levels

were condensed into five bands from 1 (black) to 5 (white). The

bands were approximately logarithmically chosen as recommended in

reference (8):

Gray Level Range Reduced Range

0 - 34 1 (black)
35 - 79 2
80 - 138 3

139 - 215 4
216 - 255 5 (white)
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1~

A schcme- for printing out the digitized picture by computel w-as

devised as recommended in reference (8). The computer recoil-

structior is shown in Figure 8.

The digitized image was encoded and reconstructed in two ways.

Fir,,t, each class was clustered individually and the picture ',as

reconstructed by assig. in4; each point in the 32 x 32 location

matrix to the cell nearest: to it. Second, and independently, the

picture was subjected to a row-by-row Fourier transform and re: on-

structed several times, varying the number of coefficients retained.

5.2 Clustering Results

A clustering analysis was performed separately on each performa.nce

class in the following manner.

The following number of cells was genLorated fcr each class:

Class I (black) - 17

Class 2 - 21

Class 3 - 17

Class 4 - 99

Class 5 (white) - 9

163

Figures 9 through 13 show the locations of the various cells in

each performance class.

The picture was reconstructed from the 163 clusters in the follow-

ijg arbitrary way; Each point was examined separately; the

nearest cell was found and the point was assigned to the perforn'Ance

class associated with that cell.
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The 1,024 points in the picture matrix were separated into the

fiye performance olasses. The table below ,ihows the number of

points p)er class, and the percentage of Ihe total number of points

in Pach class.

Class Number N,imber of Points Percentage of Total Points

1 74 7.23

2 82 8.01

3 77 7.52

4 744 72.66

5 47 4.59

1,024 100.

By far the greatest number of points is in Clas , 4, which is the

gray level that includes all of the sky (see Figure 7).

Initially, the matrix information was input to the cluster

analysis row-by-row, from top left to bottom right. However, for

subsequent clustering analyses, the points wi~hin each of the

five classes were randomly presenrod. This enabled the, flustering

algorithm to exploit its ability to locate regions of interest.

Additionally, avoiding a row--by-row analysis emphasized the con-

trast between encodin. by clustering and encoding by Fourier trans-

forms. The reconstructed picture for the cluster analysis is

shiown in I'igurc 14.

5. 3 Fouu.'er Tiansfcrm Results

For the Fnurier analyses, the picture was transfocmed and encoded

ro'w-by-row. resulting in 32 sets of coefficients, each set contain-

ing 32 coefficients. The picture was reconstructed in five ways,

each using the following number of coefficients:
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Reconstruction Number Number of Coefficients (out of 32 max.)

1 31

2 29
3 23

4 15

5 7

In a.l cases, the highest frequency coefficients were eliminated;

this means that the data were low-pass (spatial) filtered. Since

the first two reconstructions are very sirmilar to the original

transform both in number of coefficients and in reconstruction

accuracy, only the last three were considered extensively. Their

reconstructions are shown in Figures 15 through 17. I
5.4 Comparison of Results

The subjective accuracy of the cluster reconstructed pictures

is less than that oi any of the Fourier reconstructions. However,

this is probably attributable to the coarseness of the digitiza-

tion and the resulting large size of the clusters -- particularly

those in Class 4 (as shown in Figure 12).

Various objective measures of accuracy enable more quantitative

comparisons to be made. To begin with, it is important to consider

the reduction in transmitted information achieved by each of the

algorithms. The amount of data initially available is 1,024

"performance values" (i.e., gray levels).

The amount of information transmitted after clustering is equal to

two scalars for each onc-point cell (location coordinates) and

tour scalars for each larger cell (two location coordinates and

two size factors). The amount of information transmitted by the

Fourier transform method is the product of the number of rows

and the number of coefficients retained per row. Table 12 lists

the reduction in information volume for the cluster analysis and

the last three Fourier analyses, There are two ways of describing the
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X4664f6sy~kY 7XxVxI )YXXtarIrxIyZ
Y414&XAfX )X1k7/x~tXKV)vry ix 'y

X 8 6e 6 # 4 5 , XX ~ .r .,4$ 4 & y X

4O6SX)" xXXI4f-644$4r.:'

*994f,'KXXYX4 44,;/e~ee.4$6'6sY;xx 4444) X

ee~oe4XA 71'w r XAbYf1 l&4 74
9' D6 XYX t)lXXXX7X-1 x 1 4164 x lA ,

:608*efD 5s6Xr 75 4i-xX TrryrI t, 4s *)x x rx 4

FIOCU 15: RECONSTRUCTION OF PICTURE FROM FOURIER TRANSFVORM
(7 LOW FREQUENCY COE"FFIC IENU'S RETAINED))
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TABLE 12

REDUCTION AND COMPRESSION OF INFORMATION
BY VARIOUS ENCODING METHODS

Rcduction Compression
Method of Encuding Number of Data Factor Factor

Information (1CeI s_ _(1-N/1024) (1024/N)

Original Picture 1,024 0.00 1.00
Cluster '304 0.41 1.70
Fourier 3 736 0.28 1.39
Fouripr 4 480 0.53 2.13
Fourier 3 2•4 0.78 4.57
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reduct ion of infor-iation: one is the reduction factor, tt-

fraction of original information that has been eliminated

HNR = 1
1024

where N is the number of scalars transmitted for a given recen-

struction; the second is the conpressikn factor, the ratio of

original informaation0 to transm~itted infVornaation

102.1C - N

The cluster analysis compares favorably to the Fourier analyses;

its reductior in information falls between the third and fourth

Fourier transforms.

Anoth-er way cf asaessing reaonstructions is by comparing their

relative accuracies point-by-point for the 1,024 points. Table 13

shows 'confusion matrices' and resultant percentage accuracy for

each of the four reconstructions. Again, the cluster reconstruc-

tion compares favorably; its accuracy is only slightly less than

that of the fourth Fourier transform.

Figures 18 and 19 summarize the results of the two tables. The

accuracy of the cluster results falls about 7 percent below that

which would be expected from a (hypothetical) Fourier encoding with

the same reductiote and compression factors.

These results are very encouraging, particularly in view of two

considerations: First, the limited range of the performance

classes is more favorable to the Fourier method than to clustering.

The clustering algorithm can readily deal with almost any number

of gray levels; bat given a wide range of values to model, the

smoothing eflect of a rtruncated Fourier transform would tend to

eliminate the extreme values, which might be the most informative.
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TABTI, 13 :

CONFUSION MATRICEIS OF VARIOI 3 IMA(TI. IECON;TRUC-lC IONzS

(a) FFT, 7 Coefficien;rs Iletairll,

Cowpltputec Cla! !q Value
1 2 3 5

I IA 45 18 0 0

2 0 25 53 4 66.3 Percent
Class 3 3 6 53 15 0 Accuracy
Va I ue u 0 1 ! 133 574 26

5 0 0 5 26 C 6

1,) FFT, 15 Coeff ic ieut ýs Retai ned

Computed Class Value
1 2 ' 4 5

1 33 39 2 0 0

2 8 51 21 2 0
Trues 81.5 Pere ortCl:, 3 0 8 59 10 0 A1. Prtt

4 0 4 1] 16536

(c) FFT, 23 Coefficients Retained

Computed Class Value
.1 2 3 q 5

154 20 0 0 ,

T 2 8 62 12 0 0

Cla'-;s 3 0 2 69 6 0 92.3 Percent
Val uI 4 0 0 24 3 Atcuracy v

5 0 U 0 1 4:3

(dI) Cluster of 1,324 Randomiized Points

Computed Class Value
2 3 4 5

57 3 4 5 0

Tru 2 17 48 8 9 0
Clasq 3 ] 11 43 21 1 Accurce
Va ,t 4 8 31 40 638 27

5 0 0 l1 7
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Sovond, Ihle Ie'rsrt:1ion front ctii-sters used here wa an arh -

ti-ary and \crv a mpc ethod . Thore are seker il other mnethodsý

to choosie I m; ft!'or eamnp e, com'putlti ng t he pef ftt na -u0 :

poin t, as a weighted s~um )f thuý val ties of the n-aires-t cluster!s

or e-ven a f al1 the ci us-t ers. A moi-e sophist icated Peconstrucetijt)n

pr-ocedv U coul0d jnciFea.ýt? Ihlt: of&O~sV0 rcc',ons t ro cii n From

el uses tel aISW]ibuove t hatI from a Four iior t rai,slfovrm with the same('

vol umle, of- in to rfltziot3

5.5 ConclIusions

Clus-tering analysis, is cr-rtaini- "oiullt consideration as a methodI

ox imag-e encoding and-- reconstr'ucti~on. On a pr-obleir. invwolv ingi

var corsesampie size (32x32), re-construction from cluosters

using a simnple technique was only- siighuly less accuraite than

reconstruct ioii via a Four ier trans formn wvith roughtly the -aare

rectuct ion (-,f in iorrunatio l oft V into, in ti d i i, i on i. 1 pro-v )l (i'k itg

good recon st ruct ion . c lous toy- lug-% ana I ius ,'M-n f ind re-gions of'I

p~ossible interest txiithin the imiage because of it.-- abiliity to e-on--

st-dei' the image as a who] e rat her than rixw-bV-row. This

o h re eris. econs i derab] ehace it s valueo as a too] in imagie.

pattern vce'-ogniti')n and'ls'fatin
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SECTION VI

CO.CLUSIONS AND RECOMMENDATIONS

The work effort in this study has been devoted to extension and

further development of search algorithms ol utility

for self-organizing control systems relevant to Air Force need.s.

Applications of these algorithms have demonstrated their capabilities

for use in optimization of the paramcters of human factors mod-is

that describe characteristics If man-machine interface proolems.

The results of this study can he summarized as lollows

* Search methods developed in the previous study have
been extended to higher-dimensional multimodal
problems and have been shown to be very effective.

o A composite search algorithm incorporating both the
pdf-giided search and the guided accelerated random
search has been simulated and tound to be more effec-
tive than either search algorithm alone.

*Clustering analysis; for assessing thr complexity of
a search surface has shown to be of valUe.

*A nev e method for -.nage encoding has beon fcrmuiated
that appears to be potentialiv superior to methods
currently in use.

Further work should be initiated to seek ways of making, current

techntques more powerful, and to broaden their areas of application.

We recommcnd that the following areas ue investigated:

6 Extensive effort should be devoted to developing an
algorithm that combines the best featurrs of PDF and
GARS. The substitution of PDF for the first porlion of
GARS has been demonstrated to be an effective strategy.
The next step should be to combine them into a single
algorithm arnd to insert PDF into the statistically
biased search phases of GAllS so that its multimodal pdf
model, which extends throughout the performance space,
can be used to guide GARS in the choice of trial points,
rather than the present unimodal pdf model. Additionally,
provision should be made to explore local maxima as we.ll
as the global maximum, should this be desirable.
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" The use of clustering aralysis to measure the complexity
of a search (optimization) problem should be examined
me.re ?losely. A technique is needed that will make the
cluster results nmorc readily understood as a measure
of cop..lexity. This is especially important in problems
of high dimensionality, where interpretation of clustering
results can be difficult.

"* The use of clustering analyses to encode and reconstruct
images should be developed using pictures with finer
divisions. A reconstruction function stould be formulated
that wiil take more advantage of the benefits to be
gained from clustering --- in particular its sensitivity
to regions of interest in the picture. The latter ability
will directly couple this new encoding technique to
pattern recognition/classifIcation interests.
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